
Linear reversible second-order cellular automata and their first-order matrix equivalents

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 10791

(http://iopscience.iop.org/0305-4470/37/45/006)

Download details:

IP Address: 171.66.16.65

The article was downloaded on 02/06/2010 at 19:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 10791–10814 PII: S0305-4470(04)81262-9

Linear reversible second-order cellular automata
and their first-order matrix equivalents

A J Macfarlane

Centre for Mathematical Sciences, D.A.M.T.P., Wilberforce Road, Cambridge CB3 0WA, UK

E-mail: a.j.macfarlane@damtp.cam.ac.uk

Received 27 May 2004
Published 28 October 2004
Online at stacks.iop.org/JPhysA/37/10791
doi:10.1088/0305-4470/37/45/006

Abstract
Linear or one-dimensional reversible second-order cellular automata,
exemplified by three cases named as RCA1–3, are introduced. Displays
of their evolution in discrete time steps, t = 0, 1, 2, . . ., from their
simplest initial states and on the basis of updating rules in modulo 2
arithmetic, are presented. In these, shaded and unshaded squares denote
cells whose cell variables are equal to one and zero respectively. This
paper is devoted to finding general formulas for, and explicit numerical
evaluations of, the weights N(t) of the states or configurations of RCA1–3,
i.e. the total number of shaded cells in tth line of their displays. This is achieved
by means of the replacement of RCA1–3 by the equivalent linear first-order
matrix automata MCA1–3, for which the cell variables are 2 × 2 matrices,
instead of just numbers (∈Z2) as for RCA1–3. MCA1–3 are tractable because
it has been possible to generalize to them the heavy duty methods already well-
developed for ordinary first-order cellular automata like those of Wolfram’s
Rules 90 and 150. While the automata MCA1–3 are thought to be of genuine
interest in their own right, with untapped further mathematical potential, their
treatment has been applied here to expediting derivation of a large body of
general and explicit results for N(t) for RCA1–3. Amongst explicit results
obtained are formulas also for each of RCA1–3 for the total weight of the
configurations of the first 2M times, M = 0, 1, 2, . . ..

PACS numbers: 45.30.+s, 02.10.−v, 02.30.Lt

1. Introduction

Since the publication of the pioneering paper [1], there has been sustained interest in the subject
of cellular automata, continuing right up to the present time. Evidence for this can be provided
by considering a list of books devoted to the topic, which includes [2–9], as well as others
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devoted to applications such as fluid flow. From [2] one gains access to many of the important
early papers, and from [9] one finds a truly vast body of examples, with extensive discussion
and impressive illustration, while in [8] one finds comprehensive referencing of the field in
general.

One strong motivation for the continued study of cellular automata stems from the desire
to create simulations of characteristic features of real-world processes; see chapters 7–9 of
[9]. In the case of physical processes a general property of importance is reversibility or time-
reversal invariance. Chapter 9 of [9] gives a broad analysis of this concept in relation to cellular
automata; see also chapter 8 of [8] and chapter 14 of [3]. Further many physical processes are
governed by second-order partial differential equations within theories that are invariant under
time reversal. This applies in discussions of particle behaviour, e.g. scattering and particle
production, which has been treated using reversible second-order cellular automata in [10].
Also, [11] considers the use of reversible cellular automata in the modelling of processes
in quantum mechanics and quantum field theory. There is much work also on reversible
cellular automata which pursues aims in statistical mechanics, or else purely structural aims;
we mention a few examples [12–17]. For references to fluid dynamics, see [8]. The work
presented in this paper is different in outlook and aims from many of the works cited: we
wish here to study the behaviour of second-order reversible cellular automata with a view
to exhibiting, and getting a good measure of algebraic control over, some of the interesting
mathematical structures which they contain.

Our interest here is confined to one-dimensional or linear cellular automata, life in one
dimension, as opposed to Conway’s game of Life, see e.g. [18, 19]. The foundations (and more)
of the studies of linear cellular automata were laid down already in [1], and we use the language
of this paper to refer to the automata of Rule 90 and of Rule 150. We discuss these first-order
automata in preparation for the central purpose of this paper, which is to analyse reversible
second-order cellular automata. It is well known that second-order differential equations can
often with advantage be replaced by equivalent first-order matrix equations. Here we wish to
exploit this fact in the context of reversible second-order cellular automata, replacing these by
equivalent first-order matrix cellular automata for which the cell variables instead of just being
numbers are matrices. The value of this replacement lies in the fact that we can generalize the
heavy duty methods [20, 21] already developed for first-order cellular automata like those of
Wolfram’s Rules 90 and 150 where cell variables take on values 1 and 0, to cases like MCA1–3
for which the cell variables take matrices as values. We think matrix-valued cellular automata
are of intrinsic interest and have potential for development. But they have been used here as
tools to allow us to carry out our mathematical analysis of RCA1–3, and later perhaps more
general studies.

This paper approaches the subject of reversible second-order cellular automata by
reference to several examples of (modestly) increasing complexity. We suppose that the
cells Cn, n ∈ Z or Z+, of the linear arrays of our one-dimensional automata have (numerical)
variables xn(t) attached to them at each instant of discrete time t ∈ Z+. The simultaneous
updating of all cells Cn of the arrays at each time t is specified by the following rules, applied
using modulo 2 arithmetic:

xn(t + 1) = xn−1(t) + xn(t − 1) mod 2, (1)

xn(t + 1) = xn−1(t) + xn(t) + xn(t − 1) mod 2, (2)

xn(t + 1) = xn−1(t) + xn(t) + xn+1(t) + xn(t − 1) mod 2, (3)

respectively. We refer to the corresponding automata by the names RCA1–3. That these rules
are indeed reversible can be seen by using modulo 2 arithmetic to make xn(t − 1) the subject
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RCA1 RCA2 RCA3

Time (t+1)

Time (t−1)

Time t

Figure 1. Diagrams of the rules for the updating of the automata RCA1–3. The dashed boxes in
the laterally spread neighbourhoods of cells Cn−1, Cn, Cn+1 at time t do not correspond to entries
used in the actual rules RCA1–3, but are present to allow easy visual comparison of which cell
variables at times (t − 1) and t influence cell variables at time (t + 1).

of (1)–(3), writing, for RCA1, for example,

xn(t − 1) = xn−1(t) + xn(t + 1) mod 2. (4)

Figure 1 gives a diagrammatic representation of (1)–(3).
For RCA1–3 the single seed initial state configuration is specified by

xn(t = −1) = 0 for all n ∈ Z,

and x0(t = 0) = 1, xn(t = 0) = 0 for all n �= 0 ∈ Z. (5)

In fact for RCA1 and RCA2, only n ∈ Z+ is relevant since evolution from (5) can never enter
n < 0.

The evolution of RCA1–3 from the initial states of (5) is displayed in figures 2–4,
respectively.

Some explanation of the displays may be helpful. It should be enough to address figure 2
for RCA1. The numbers at the left give the times t corresponding to the configuration of RCA1
given by the tth row for 0 � t � 31 with the binary representation tB of t shown alongside
for later use. If at any t the cell variable xn(t), n = 0, 1, 2 . . ., takes the value 1 then a shaded
square sits at the nth cell position; if xn(t) = 0 then the cell position is left blank. The evolution
of RCA1 in t as t increases discretely in unit steps proceeds down the display in a manner
governed by (1). To see exactly how this works consider the times t = 3, 4. Figure 2 tells us
that at t = 3 the only non-zero cell variable is x3(t = 3) = 1, while at t = 4 we have only got
x0,2,4(t = 4) = 1. We can now construct the t = 5 line by referring either to (1) or else to the
left column of figure 1 for t = 4. The examples

x1(t = 5) = x0(t = 4) + x1(t = 3) = 1 + 0 = 1

x3(t = 5) = x2(t = 4) + x3(t = 3) = 1 + 1 = 0 mod 2

x5(t = 5) = x4(t = 4) + x5(t = 3) = 1 + 0 = 1

tell us why there are shaded boxes at positions 1 and 5 but not at 3 in the t = 5 line, and so
on. To get the (t + 1) line from its two predecessors such steps are done simultaneously for
all cells n = 0, 1, 2, . . .. To initiate the process we set out from the single seed state (5) with
the t = −1 line blank and xn(t = 0) = δn0.

Finally we define the weight N(t) of the configuration of RCA1 at each time t to be the
total number of shaded boxes in the tth line of figure 2, or the total number of cell variables
xn(t) that take the value one at time t. Figure 2 records the N(t) in its right-hand side column.
Figure 2 is obtained from a simple C-program. Similar remarks apply to RCA1–3.
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Figure 2. The reversible cellular automaton RCA1 of (1).

It is a central purpose of this paper to find general formulas for N(t) and related quantities
for RCA1–3, and to show that this leads us to much of the interesting mathematical structure.

Our approach to the analysis of RCA1–3 introduces yn(t) = xn(t − 1) for all relevant n

and t, forms the two component vector(
yn(t)

xn(t)

)
,

and converts the second-order evolution rules (1)–(3) of RCA1–3 into equivalent first-order
rules for linear matrix cellular automata MCA1–3. This leads to the displays of figures 7–9,
shown below at suitable points in the text. The entries in the squares of these displays denote
matrices representing the corresponding cell variables. They are defined in the text below near
the displays.

Our treatment of the automata MCA1–3 depends on generalization of the methods applied
in [20, 21] to cases like Rules 90 and 150. For MCA1 and MCA2, this turns out to be easy
depending on little more than following the fate of the variable in each cell at time t in the
transition to the lines for times 2t and (2t + 1), in a fashion similar to a formal view of the
evolution of Rule 90 from a single seed initial state. For MCA3 much more effort needs to be
expended to achieve our present aims by generalizing the methods of [20, 21] for Rule 150. In
[20, 21] there is a clear and comprehensive account of the r-block approach to the analysis of
first-order cellular automata for which the cell variables take values in Zk, k = 2, 3, 4, . . .. In
this approach one learns how to describe algebraically, and hence exploit for weight-counting
purposes, the fates of blocks of r-cells in the transition from rows at time t to rows at times
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Figure 3. The reversible cellular automaton RCA2 of (2).
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Figure 4. The reversible cellular automaton RCA3 of (3).

2t and (2t + 1). In the material we need to present on Rule 150, it is enough to deal with 2-
blocks, i.e. blocks of two adjacent cells, whose variables take on values in Z2. We describe the
relevant material in section 2.2, below, because understanding of it is an essential prerequisite
to understanding the generalisation needed to conquer MCA3, for which the cell variables are
ones which take values in M2,2(Z2), the set of 2 × 2 matrices whose elements lie in Z2.
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Once algebraic control of MCA1–3 has been attained, the derivation of general expressions
for N(t) for RCA1–3, and the numerical evaluation of these, can be tackled with good prospects
of success.

Our results for the evolution from the single seed initial states of (5) of RCA1–3 include
the following. For each of them, we establish a general expression for the weight N(t) of their
configurations at time t. This involves, in each case, transition matrices A0 and A1 which
generate algebraically the transition from line t to lines 2t and (2t + 1). (The relevance of
these matrices to the binary representation tB of the time t, and hence to our treatment of N(t)

for all cases studied here, is explained in section 2.2 for Rule 150.) For RCA1–3, the transition
matrices are respectively 2 × 2, 3 × 3 and 8 × 8.

For RCA1 a systematic approach to the evaluation of N(t) is available, and it leads to
an algorithm that resembles Wick’s theorem in quantum field theory for writing down the
numerical value of N(t) directly for any t. For RCA2 we still have a systematic approach to
the evaluation of N(t), but have not found an analogue of the algorithm. For RCA3, we quote,
with derivation, results for N(t) for times t with the binary representations tB = 1m, 1m0n.
While we found no real obstacle in pushing our evaluations further, we do not present any
more results. The results in question become rather quickly more complicated, although
always suggestive of the underlying structure that we are yet to uncover. The quest for a
systematic approach to the evaluation of N(t) for RCA3 however is an ongoing project.

There is another tractable quantity of some interest that can be defined in terms of the N(t)

and evaluated for RCA1–3, namely the total weight of their first 2M rows:

V(M) =
2M−1∑
t=0

N(t). (6)

For RCA1 and RCA2 we deduce

V(M) = 1
2 (3M + 1), (7)

V(M) = 2M−1(FM+2 + 1), (8)

where Fn defines the nth Fibonacci number. For RCA3, V(M) is given in section 5 below
by (71).

The material of this paper is organized as follows. Section 2 reviews for later use some
results for Rules 90 and 150. For Rule 90 these are simple and obvious, but give some pointers
towards our treatments of MCA1 and MCA2. Rule 150 requires application of some of the
r-block methods of [20, 21], which, for r = 2 and evolution from single seed, we describe in
detail just as far as it is needed in preparation for our work on MCA3. It is worth pointing
out that the general expression (19) below for N(t) for Rule 150 has an analogue of similar
structure for each of MCA1–3, and indeed for any first-order cellular automata for which the
underlying arithmetic is that of Z2. Work on MCA1–3 and its application to RCA1–3 occupies
sections 3–5. Section 6 offers a few additional remarks.

An appendix deals with certain sequences of numbers: families χn and φn defined initially
for n = 0, 1, 2, . . .. These enter our studies because it so happens that many of our explicit
results for N(t) take on a neat and natural appearance in terms of them. The χn are already
well known in the context of Rule 150 [1], but the φn arose by inspection of the way best to
organize computer data as it emerged for RCA3. The χn satisfy a difference equation from
which all its properties stem. Since the φn were observed to have a close relationship to the
χn, the difference equation they obey and their properties follow too.
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2. The first-order cellular automata of Rules 90 and 150

2.1. Rule 90

Rule 90 is defined by

xn(t + 1) = xn−1(t) + xn+1(t) mod 2, (9)

and we consider only its evolution from the single seed initial state

x0(t = 0) = 1, xn(t = 0) = 0 for all n �= 0. (10)

This gives rise to the well-known picture in figure 5 of its evolution in time. The columns on
the right of figure 2 show the weight N(t) of the configuration for each t, 0 � t � 15, with the
binary representation tB of t shown alongside, the weight being equal to the number of shaded
squares of the configuration. We note some easily seen results. If tB contains B(t) ones, then
N(t) = 2B(t). Also V(M) as defined by (6) is given by V(M) = 3M .

Needless to say far more can be (and has been) done in the context of Rule 90, see
[20, 21].

We note, for later use, since use of it is overkill for Rule 90, that, given knowledge of
the tth line of figure 5, we can write down the lines for times 2t and (2t + 1) directly: each
cell shaded at time t gives rise to one shaded cell at 2t and two shaded cells at (2t + 1). We
generalize this reasoning later for RCA1 and RCA2 to useful effect.

2.2. Rule 150

Rule 150 is defined by

xn(t + 1) = xn−1(t) + xn(t) + xn+1(t) mod 2, (11)

and we consider only its evolution from the single seed initial state (10). This gives rise to the
picture figure 6 of its evolution for increasing t values. The columns at the right of the display
again provide relevant data.

A nice general expression for N(t) for Rule 150 is given without indication of its origin
in [1]. Suppose that the binary representation of tB of t contains strings of ones of lengths
aα, α = 1, 2, . . . , p, separated by strings of zeros whose lengths are irrelevant. Then

N(t) =
p∏

α=1

χaα
. (12)

Because the quantities χr occurring here enter also in several places in our subsequent work, a
discussion is given, in the appendix, of their properties. This provides a table of their values.
However, the values

χ1 = 1, χ2 = 3, χ3 = 5, χ4 = 11,

enable it to be checked that (12) agrees with all the data in figure 6. For example, for
t = 423 = tB = 110100111 or 12010213, we have a1 = 2, a2 = 1, a3 = 3, so that N(t) = 3.1.5 =
15, correctly. Neither the length of the separating strings of zeros in tB nor the order of the χ

factors in (2.3) matters.
To derive a general closed formula for N(t), which implies also (12) is a procedure of

three stages in which

(a) one obtains an intuitive view of how the configuration of Rule 150 at time t determines the
configurations at each of the times 2t and (2t + 1),
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Figure 5. Evolution from single seed of the automaton of Rule 150.
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Figure 6. Evolution from single seed of the automaton of Rule 150.

(b) one finds transition matrices A0 and A1 which describe this in algebraic terms, and
(c) one uses these matrices and the binary representation tB of the time t to reach the required

formula.

A similar procedure is followed for the other cellular automata problems of interest here.
A careful exposition of this is given for Rule 150, because it is a prerequisite to understand the
discussion in section 5.

By inspection of figure 6, we infer the rule that tell us how, given the line of time t, we
write down the lines at times 2t and (2t + 1), for any t. The underlying rules are

0 −→ 000, 1 −→ 010 for t −→ 2t,

0 −→ 000, 1 −→ 111 for t −→ (2t + 1).

However, appreciation of this is a subtle matter, because of the problem of overlapping blocks,
described and comprehensively resolved by [20, 21]. To explain the present, simplest possible,
context, let us look at a portion of time t line . . . xy . . ., where the dots indicate cell variables
that do not enter our present discussion. This contains the 2-block xy, i.e. a block of two



Linear reversible second-order cellular automata and their first-order matrix equivalents 10799

consecutive cells xy. There is an unambiguous rule for finding the unique 3-blocks at each of
the times 2t and (2t + 1) that arise from the 2-block xy. For t −→ 2t

(x −→ 0x0) and (y −→ 0y0) imply (. . . xy . . .) −→ (. . . x0y . . .),

and for t −→ (2t + 1)

(x −→ xxx) and (y −→ yyy) imply (. . . xy . . .) −→ (. . . xzy . . .),

where z = x + y mod 2. The middle entry of the latter 3-block is all that shows the way the
independent effects of x and y overlap here at the times 2t and (2t+1); the result for the former
is trivial as 0 + 0 = 0 mod 2. In details, for the allowed 2-blocks 00, 10, 01, 11, we have

(00) −→ (000) and (000) at the respective times 2t and (2t + 1),

(10) −→ (100) and (110) at the respective times 2t and (2t + 1),

(01) −→ (001) and (011) at the respective times 2t and (2t + 1),

(11) −→ (101) and (101) at the respective times 2t and (2t + 1). (13)

Next consider how a complete line at time t gives rise to the complete lines at times 2t and
(2t + 1). A single example should clarify this. The line (1101011) of figure 6 for time t = 3
defines a sequence

(01), (11), (10), (01), (10), (01), (11), (10)

of eight 2-blocks, with (13) thereby determining a corresponding sequence of 3-blocks at time
t = 7

(011), (101), (110), (011), (110), (011), (101), (110), (011).

These can be seen in the t = 7 line of figure 6: (110110111011011).
We can now pass on to counting problems, in which (00) blocks play no role and (01) and

(10) enter on the same footing. Further, viewing a given line as a sequence of two overlapping
2-blocks, as in the above example, represents a potential double counting that will need to be
compensated for later. We can see from equation (13) that each 2-block of type (01) or (01)
present at time t gives rise at time (2t + 1) to one 2-block of type (01) or (01) and one of
type (11), while each 2-block of type (11) present at time t gives rise at time (2t + 1) to two
2-blocks of type (01) or (01). Thus if there are a1 2-blocks of types (01) or (10) and a2 of type
(11) present at time t then at time (2t + 1) there will be b1 and b2 of the respective types so
that we have

b = A1a, where b =
(

b1

b2

)
, A1 =

(
1 2
1 0

)
, a =

(
a1

a2

)
.

We have here defined the transition matrix A1 for transferring the counting of 2-blocks from
time t to time (2t + 1). The counting of unit entries or shaded boxes in figure 6 at time t now
gives the weight N(t) at time t as

N(t) = 1
2cT a = 1

2 (1 2)

(
a1

a2

)
= 1

2a1 + a2, (14)

where the counting vector c is given by cT = (1 2), since the 2-blocks (01) or type (10)
contribute one to the count and (11) two. Also

N(2t + 1) = 1
2cT A1a = 3

2a1 + a2. (15)
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Table 1. Values of N(t) for 0 � t � 7.

t tB v(t) N(t)

0 0 u 1
1 1 A1u 3
2 10 A0A1u 3
3 11 A1

2u 5
4 100 A0

2A1u 3
5 101 A1A0A1u 9
6 110 A0A1

2u 5
7 111 A1

3u 11

The answer for N(t) must of course always be an integer, e.g. the line (1101011) at t = 3 has
a1 = 6, a2 = 2 giving N(3) = 5 and predicting via (15) N(7) = 11, as figure 6 also gives. By
a similar means, the transition matrix A0 for the t −→ 2t transition is found to be

A0 =
(

1 2
0 0

)
. (16)

A very important result from [20, 21] can now be stated. Let u, with uT = (2, 0) be the
initial vector as a1 = 2 and a2 = 0 at t = 0. Let c, with cT = (1, 2) be the counting vector as
above. Let the binary representation tB of t be

tB = ipip−1 · · · i2i1, (17)

so that

t =
p∑

α=1

iα2α−1. (18)

Then we have

N(t) = 1
2cT Ai1 · · · Aipu = 1

2
cT

p∏
α=1

Aiαu. (19)

Here the factor 1
2 compensates for double counting due to use of overlapping 2-blocks. To see

that the building up of the configuration of the automaton with time follows the binary tree
structure of tB, it is sufficient to note that, if t = tB in the binary, then the times represented in
the binary as tB1 and tB0 are equal to (2t + 1) and 2t. So insertion of a 0 or 1 at the right-hand
side end of a binarily represented time, inserts into the previous N(t), to the immediate left of
cT , a matrix A0 or A1 to get N(t) at the new time. Thus we find the results shown in table 1.

A single example illustrates, confirming also the correctness of the ordering of the
transition matrices in (19) relative to (17). Consider the p = 4 example

t = 13, tB = 1101 = 1 + 0.2 + 1.22 + 1.23.

To get N(13) directly from the initial vector u at time t = 0, we form in turn the vectors

A1u, A1A1u, A0A1A1u, A1A0A1A1u.

thereby reaching the vectors for times 1, 3, 6, 13. Then N(t) = 1
2cT A1A0A1A1u = 15 comes

out correctly.
We repeat that (17)–(19) (apart possibly from the external factor one-half in (19)) apply

to all cases which depend on the use of the binary representation of t. In any example, the
problem is to identify appropriately the vectors c, u and the matrices A0, A1.
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2.3. Proof of (12)

Here we proceed from the formula (19) to proof, new here, of the result (2.3) first given in [1].
Firstly, we note that the facts

A0
r = A0, A0u = u, (20)

which tell us that any string of zeros in tB = t can be replaced by a single zero regardless of
its actual length, and that zeros in tB to the left of all ones can be ignored (of course). The
key step of writing A0 = 1

2ucT directs us towards a general procedure. In this we write, for
example for tB = 1x0y1z,

1
2cTA1

zA0
yA1

xu = 1
2cTA1

zA0A1
xu = (

1
2cTA1

zu
)(

1
2cTA1

xu
)
. (21)

For any string of ones of length n in tB, (21) indicates that we should define and evaluate the
quantities

wn = 1
2cTA1

nu, (22)

for then the right-hand side of (21) has a product structure of the type wzwx required by (12).
Since A1

2 = A1 + 2I, we find that

wn+2 = wn+1 + 2wn. (23)

The initial values of the sequence of wn are given by w0 = 1 and w1 = 3. It follows that
the wn can be identified with the χn defined in the appendix, and that proof of (12) can be
completed.

2.4. Evaluation of the quantity V(M) of (6)

To obtain the total weight (6) for the first 2M rows of figure 6, we use the result

V(M) = 1
2cT AMu, A = A0 + A1 =

(
2 4
1 0

)
. (24)

To see that this is correct, we expand AM as a sum of 2M ordered products of the transition
matrices A0 and A1. Recalling that powers of A0 on the right of any term can be omitted by
reason of (20), we see the required sum emerges.

From the characteristic equation of A we find the difference equation

V(M + 1) = 2V(M) + 4V(M − 1). (25)

Since V(0) = 1 and V(1) = 4, we can show that

V(M) = 2MFM+2, (26)

where Fn denotes the nth Fibonacci number.

3. The reversible cellular automaton RCA1

3.1. Passage to the matrix cellular automaton MCA1

Our work on RCA1 is confined to evolution in discrete time from the single seed initial state
of (5) on the basis of the updating rule (1), namely

xn(t + 1) = xn−1(t) + xn(t − 1) mod 2. (27)
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Here we wish to analyse the time evolution of RCA1 with the aid of an equivalent matrix
cellular automaton whose time evolution is governed by a rule that is first order in time like
Rules 90 and 150. The motivation is that we can thereby apply appropriate generalization of
techniques already developed systematically for rules like these.

We start by defining

yn(t) = xn(t − 1), for all t and all n � 0. (28)

Then (27) and (28) imply
(

yn(t + 1)

xn(t + 1)

)
=

(
xn(t)

xn−1(t) + yn(t)

)
and

(
yn(t = 0)

xn(t = 0)

)
=

(
0
1

)
δn0. (29)

Forming a generating function

�(t, λ) =
∞∑

n=0

λn

(
yn(t)

xn(t)

)
=

(
Y(t, λ)

X(t, λ)

)
, (30)

we find

�(t + 1, λ) =
(

X(t, λ)

Y(t, λ) + λX(t, λ)

)
=

(
0 1
1 λ

)
�(t, λ). (31)

Equations (31) and (29) then give

�(t + 1, λ) = Mt�(t, λ), M =
(

0 1
1 λ

)
, �(0, λ) =

(
Y(0, λ)

X(0, λ)

)
=

(
0
1

)
(32)

and hence

X(t, λ) = Tr MtP = Tr(G + λP)tP , (33)

where

G =
(

0 1
1 0

)
, P =

(
0 0
0 1

)
. (34)

This will enable us to evaluate the weight N(t) of the state of RCA1 at time t, since

X(t, λ = 1) =
∞∑

n=0

xn(t) = N(t). (35)

We stress the fact modulo 2 arithmetic governs the steps of the calculation of xn(t) throughout
the discussion.

Noting the role of the two-by-two matrix MtP in (32) and hence (33), we make the
definition

MtP =
∞∑

n=0

cn(t)λ
r. (36)

This is the generating function of matrix-valued cell variables cn(t). Multiplication of (36) on
the left by M then yields

cn(t + 1) = Pcn−1(t) + Gcn(t), for all n, t, (37)

together with cn(t = 0) = δn0.
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Figure 7. The matrix cellular automaton MCA1.

Thus we have reached the sought after definition of the first-order matrix cellular automaton
MCA1 to which RCA1 is equivalent. Its cell variables cn(t) take values in the space M2,2(Z2)

of two-by-two matrices whose elements belong to Z2. Equation (37) allows the generation,
from the given initial state, by a C-program, of the display of figure 7 for times 0 � t � 15.
Note that figure 7 involves non-trivially only the matrices P and the matrix E

e = GP =
(

0 1
0 0

)
, (38)

where P and G are given in (34). One may, as we show by examples, check entries in figure
7 by hand. In doing so it is necessary but easy both to take account of the non-commutativity
of matrix multiplication, and also to appreciate the role of modulo 2 arithmetic in the process.
Two examples should suffice

c3(t = 4) = Pc2(t = 3) + Gc3(t = 3) = PE + GP = E + 0 = E,

c5(t = 7) = Pc4(t = 6) + Gc5(t = 6) = PP + GE = P + P = 0 mod 2.

The tth line of figure 7 gives directly the configuration of MCA1 at time t. It also gives the
matrix MtP as a matrix polynomial in λ if one associates λn with the nth cell of the line for
each n > 0. By taking the trace of this polynomial at λ = 1 we should recover (35). We
can see otherwise this happens because Tr cn(t) = xn(t) with values 0 and 1 coming from
cn(t) = E and P . This corresponds to the observation that replacing of E and P by 0 and 1 in
figure 7 for MCA1 puts it into exact coincidence with figure 2 for RCA1.

Inspection of figure 7 provides the key to obtaining expressions for N(t). The following
observation holds for all times t. Given row t of the display, one can directly write down

(a) row 2t by replacing each entry of row t by non-overlapping two cell blocks, according to
P , E, 0 −→ P0, PE, 00 respectively,

(b) row (2t+1) by replacing each entry of row t similarly according to P , E, 0 −→ EP , E0, 00.

For example the t = 3 line E0EP gives the t = 6 line (PE)(00)(PE)(P0) or PE00PEP ,
and the t = 7 line (E0)(00)(E0)(P0) or E000E0EP , just as computer-produced figure 7 tells
us. It follows, as in section 2, that we have transition matrices whose rows and columns are
labelled in the order E, P

A0 =
(

1 0
1 1

)
, A1 =

(
1 1
0 1

)
= A0

T . (39)
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where, e.g., the first column of A0 tells us that from each entry E at time t there arises at time
2t one entry of each of E and P . As usual zero entries are irrelevant in counting studies and
are ignored.

The method using these matrices is the same as was followed in section 2, in the work on
Rule 150. Corresponding to t = tB given in binary by (17), we can use

N(t) = cT Ai1 · · · Aipu = cT

p∏
α=1

Aiαu. (40)

Since happily one does not encounter here an overlap problem like that which complicated the
treatment of Rule 150, in section 2.2, there is no factor of one-half in (4.9). Also the initial
and the counting vector are each given by

c =
(

0
1

)
= u, (41)

and the matrices of (39) must be used. It is easy to check that the results which (40) gives for
N(t) agree with those displayed on the right side of figure 7.

3.2. An algorithm for writing down any N(t) directly

To make progress with evaluating N(t) explicitly, we first note the results

cT A1
y = cT , A0

yu = u, (42)

which tells us that any string of ones at the right-hand end of tB can be ignored, which is useful,
and so can any string of zeros at the left-hand end, which is trivial.

Anticipating that strings of ones in tB separated by non-trivial strings of zeros are to be as
significant in the analysis as they were in section 2.2, consider in order the cases

N(1b1 0a1) = cT A0
a1A1

b1u, N(1b2 0a2 1b1 0a1) = cT A0
a1A1

b1A0
a2A1

b2u.

From

A1
r =

(
1 r

0 1

)
and A0

r = A1
rT ,

we find easily

N(1b1 0a1) = 1 + a1b1 = K1, (43)

N(1b2 0a2 1b1 0a1) = K1K2 + K12, (44)

where we have defined the contraction symbols

Kj = 1 + ajbj , and for j < k only Kjk = ajbk. (45)

The symbols have been called contractions because an algorithm resembling Wick’s
theorem in quantum field theory can be established for writing down directly and explicitly
the value of N(t), for t = LnLn−1 · · · L2L1, where we have used the abbreviation Lr = 1br 0ar .
The required answer is a sum of terms one for each ordered partition of n. Each term is a
product of non-overlapping contraction of the two types given in (45) that exhaust the integers
1 to n, with the qualification that the presence of Krs dictates that there can also be as a factor
of the same term no contraction either of type Ku or Kuv for r < u < s and 1 � v � n.
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We note that the two terms of (44) which correspond to the partitions 11 and 2 of n = 2
do illustrate this.

Similarly we can write

N(L4L3L2L1) = K1K2K3K4 + K1K2K34 + K1K23K4 + K12K3K4 + K1K24

+ K13K4 + K12K34 + K14. (46)

It is not hard to verify directly that this is correct. Note that (46) illustrates the language
‘exhaustive and non-overlapping’ of our general statement. For example, none of K12K3,
K13K24, K13K2K4 are allowed in (46): the first is not exhaustive, the remaining ones show
what the sense of non-overlapping is. The terms of (46) correspond to the eight ordered
partitions of four

1111, 112, 121, 211, 13, 31, 22, 4.

One can either set about general evaluations by an iterative procedure or use what follows
to provide a proof of the algorithm. Since

A0
r = I + ru2u

T
1 , (ui)j = δij , 1 � i, j � 2, u2 = u,

we can derive for N(t) = N(LnLn−1 · · · L2L1), the result

N(t) = cT R1R2 · · · Rn−1(1 + anuuT
1 )A1

bnu

= N(L′
n−1Ln−2 · · · L2L1) + anbnN(Ln−1Ln−2 · · · L2L1), (47)

where Rr = A0
arA1

br and L′
n−1 = 1bn+bn−1 0an−1 . Here the result uT

1 A1
bnu = bn has been used.

Equation (47) can be used as the basis of an iterative procedure.

3.3. Derivation of the result (7)

As in section 2.4, we have

V(M) = cT AMu, where A = A0 + A1 =
(

2 1
1 2

)
mod 2.

The transition matrix A obeys the equation

A2 − 4A + 3I = 0.

Thus V(M) obeys a difference equation with solution of the type α+β3M , and initial conditions
V(0) = 1, V(1) = 2, so that the answer quoted in (7) follows.

4. The reversible cellular automaton RCA2

4.1. Passage to the matrix cellular automaton MCA2

The study progresses as in section 3.1, with evolution from the single seed initial state (5)
according to the updating rule

xn(t + 1) = xn−1(t) + xn(t) + xn(t − 1). (48)

The definitions (28)–(30) may be retained, but now the quantity �(t, λ) of (30) is specified by
an equation very much like, but not identical to (32), namely

�(t, λ) = Mt�(0, λ), M =
(

0 1
1 1 + λ

)
= G + (1 + λ)P , �(t = 0, λ) =

(
0
1

)
.

(49)
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Figure 8. The matrix cellular automaton MCA2.

As in section 3.1, we write,

X(t, λ) = Tr MtP = Tr[G + (1 + λ)P]tP , (50)

and pass to the matrix cellular automata MCA2 defined by writing

MtP =
∞∑

r=0

cr(t)λ
r. (51)

The coefficients in (51) satisfy

cr(t + 1) = Pcr−1(t) + (G + P)cr(t), (52)

with cn(t = 0) = Pδn0, n � 0. The evolution of MCA2 follows and the first 16 lines of this
is given, with some other data, in figure 8.

The notation here is as before plus the definition

V =
(

0 1
0 1

)
= P + E. (53)

It can be seen that the passage from any row t to row 2t is achieved by the replacements
P , E, V −→ P0, VE, EE. Similarly, for passage from row t to row (2t + 1), P , E, V −→
VP , E0, PP . It follows that as in section 3, we have transition matrices with rows and columns
labelled in the order E, V , P :

A0 =

1 2 0

1 0 0
0 0 1


 , A1 =


1 0 0

0 0 1
0 2 1


 = A0

T . (54)

With t given in binary by (17), (4.9) here also yields N(t), using the transition matrices
of (54), plus appropriate initial and counting vectors c, u, given by cT = (0, 1, 1), and uT =
(0, 0, 1).
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4.2. Evaluation of the result (40) for RCA2

Actions of A0
n and A1

n on the basis ui, (ui)j = δij , 1 � i, j � 3, gives rise to results that may
be proved by induction with use of table 1 for n = 0, 1. This yields

A0
n =


χn−1 2χn−2 0

χn−2 2χn−3 0
0 0 1


 , A1

n =

1 0 0

0 2χn−3 χn−2

0 2χn−2 χn−1


 . (55)

To read these results for low n values requires the extension of the definition of χr for negative
r given, together with explicit values in table A.1 of the appendix.

One simple consequence of (55) holds for the counting vector c = u2 + u3. It is

cT A1
n = 2ncT , and hence N(1n) = cT A1

nu = 2n, (56)

obvious by inspection of figure 3. Further consequences are

N(Lab) = χa−1 + 2χa−2χb−3, Lab = 1a0b (57)

N(LabLcd) = 2χa−2χb−2χd−2 + χa−1(χc−1 + 2χc−2χd−3) + 4χa−2χb−3(χc−2 + 2χc−3χd−3).

(58)

To see that (58) for c = 0 agrees with (57) requires use of (A.5) of the appendix.
There is no difficulty in getting similar results for N(L3L2L1) etc, but no algorithm of

Wick-theorem type for organizing the increasing complication has been found. The first entry
of (56) enables an easy extension (factor 2c) of (57) from Lab to Lab1c, and from LabLcd to
LabLcd1c.

4.3. Derivation of the result (8)

Again, as in section 2.4, we have

V(M) = cTAMu, where A = A0 + A1 =

2 2 0

1 0 1
0 2 2


 . (59)

The transition matrix A here obeys the equation A3 − 4A2 + 8I = 0, and has the eigenvalues
(1±√

5), 2. It follows that VM obeys the difference equation V(M+3)−4V(M+2)+8V(M) =
0, and that the solution for V(M) is of the form

V(M) = a(1 +
√

5)M + b(1 −
√

5)M + c2M.

To determine a, b and c here, we calculate and use the initial conditions V(0) = 1, V(1) =
3, V(2) = 8. Comparing the first two terms of the solution so obtained with the solution of the
difference equation for the Fibonacci numbers

FM+2 = FM+1 + FM , F0 = 0, F1 = 1,

which is

FM = αM−βM

α−β
, α, β = 1

2 (1 ±
√

5),

we are led, after attending to some detail, to the answer (8) for V(M).
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5. The reversible cellular automaton RCA3

In this case, the cell variables xn(t) at each instant of time are defined for all n ∈ Z. We consider
evolution from single seed using the updating rule (3)

xn(t + 1) = xn−1(t) + xn(t) + xn+1(t) + xn(t − 1) mod 2. (60)

Figure 4 displays the evolution for 0 � t � 15.
As in section 3.1, we reach the first-order matrix cellular automaton associated with RCA3.

It is defined by

�(t, λ) = Mt�(0, λ), M = G + (λ + 1 + 1/λ)P , �(t = 0, λ) =
(

0
1

)
. (61)

The matrices G, P occurring here are shown in (34). Using (36)

MtP =
∞∑

−∞
cr(t)λ

r, (62)

we are led to

cr(t + 1) = Pcr−1(t) + (G + P)cr(t) + Pcr+1(t), cn(t = 0) = Pδn0, for all n, t. (63)

Using (63) as the definition of MCA3, we obtain the display of figure 9.
The symbols in figure 9 have the same meaning as those of figure 6, and each P and each

V contribute one to the counting of the weight of N(t) for each t.

5.1. Derivation of formulas

It is possible, by scrutiny of figure 9, to determine the rules that underlie the passage from the
t-line to the lines for times 2t and (2t + 1). These are

P −→ 0P0, V −→ EEE, E −→ EVE, for t to 2t, (64)

P −→ PVP , V −→ PPP , E −→ 0E0, for t to (2t + 1), (65)

as well, in each case, as 0 −→ 000. However, the problem of overlapping blocks appears
at this point somewhat as it did, see section 2.2, for Rule 150. To see how this affects our
progress consider either one of the passages (64) or (65), say the former. Suppose the pair of
entries xy occurs in the time t-line, and that in the passage to time 2t we have x → aba and
y → cdc. Then the xy pair gives rise at time 2t to the sequence (.)bed(.), where e = a + c

modulo 2. The entries (.) depend on the (here unspecified) left-hand side neighbour of x and
the (likewise unspecified) right-hand side neighbour of y at time t. However, the central entries
bed are uniquely determined by the 2-block xy in a way that respects the dictates of modulo 2
arithmetic.

To proceed, it is necessary to consider overlapping 2-blocks in the spirit of the work from
[20, 21] for first-order cellular automata like Rule 150 reviewed in section 2.2. There are in
fact eight of these to consider when we follow the most straightforward approach, so that the
matrices A0 and A1 that govern the transitions t to 2t and t to (2t + 1) are 8 × 8 (sparse)
matrices. The 2-blocks, taken in the order that we use to label the rows and columns of A0, A1

and A = A0 + A1, are

0P , PV , PE, EE, EV , V0, E0, PP.
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Figure 9. The matrix cellular automaton MCA3.

Table 2. Data for deducing the EV column of A0 and A1.

Time t E V

Time 2t ? V 0 E ?
Time (2t + 1) ? E P P ?

We do not need to distinguish between 2-blocks ab and ba. We ignore the 2-block 00 as it
does not contribute to the counting, and omit the 2-block VV which does not occur even in any
extension of figure 9 to later t.

The correct treatment of each of these 2-blocks follows lines seen in table 2 for a typical
2-block.

The line for time 2t here uses (64) while the line for time (2t + 1) uses (65). The key fact
is that the central entries V0E and EPP are uniquely determined. These entries tell us what
values to put into the EV or fifth columns of A0 and A1: the 2-block EV at time t is seen to
give rise, at time 2t to the 2-blocks V0 and E0, and, at time (2t + 1), to the 2-blocks EP and
PP . This accounts for the entries one in the sixth and seventh place in the fifth column of A0,
and in third and eighth place for A1. Hence, treating the other 2-blocks similarly, we obtain
the matrices A0 and A1:

A0 =




1 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 2 1 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0




, A1 =




1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 2
0 0 0 2 0 0 1 0
0 0 0 0 1 1 0 0




.

(66)

Once these matrices are written down all the modulo two arithmetic has been done and
we are ready to turn to the evaluation of the weights of the lines of figure 4 for general times.
The initial vector could be taken to be (2, 0, 0, 0, 0, 0, 0, 0) since each P and each V contribute
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one to the counting, and we have 2-blocks 0P and P0 initially. However, it is clear that our
treatment of 2-blocks consistently double counts all contributions, and so we use the initial
vector u given by

uT = (1, 0, 0, 0, 0, 0, 0, 0), (67)

and do not include an external factor two. The counting vector c is given by

cT = (1, 2, 1, 0, 1, 1, 0, 2). (68)

The formula for evaluation of N(t) for t = tB given by (17) again takes the form (4.9) except
that now the matrices A0 and A1 are given by (66). It is simple if somewhat tedious to check
by hand that all the counting results in figure 4 can be reproduced exactly. To go any further
it is essential to employ a computer algebra package, e.g. MAPLE, as used here.

To obtain a formula forV(M), defined in (6) that counts the total weight of all configurations
of RCA3 for times from t = 0 up to the time (2M − 1), we introduce A = A0 + A1. Since
its distinct eigenvalues are 2, 1, −1, −2, ρ± = 1

2 (3 ± √
17), we try, successfully, to evaluate

V(M) using the ansatz

V(M) = 2Ma + b + (−1)Mc + (−2)Md + e+ρ+M + e−ρ−M , (69)

and data computed for V(M) for M = 0, . . . , 5. This gives rise to the formula, checked also
for M = 6, 7, 8, . . .:

V(M) = 2
3 2M − (−1)M 1

6 + e+ρ+M + e−ρ−M , (70)

with e± = ±(ρ± + 2)/(2
√

17). It may be thought preferable to give this result in the form

V(M) = 1
2 (χM + xM), (71)

where χM is given by (A.2) from the appendix, and xM is the solution of the difference equation

xM+2 = 3xM+1 + 2xM , x0 = 1, x1 = 5,

although no deep significance is implied by doing so.
The large n ∝ 2M behaviour of V(M) can be seen from (70) (see e.g. [8], p 56) to correspond

to a fractal dimension d = 1.8325. This may be compared with the numbers d = 1.5850 and
d = 1.6942 that arise similarly from (7) and (8).

The result

N(tm) = cTA1
mu = χm, (72)

obvious in figure 4 for tm = tB = 1m can be proved. One observes that A1
ru for r = 0, 1, 2, 3

spans the set of vectors A1
ru for all integers r � 0. In fact (MAPLE),

(A1
4 − A1

3 − 3A1
2 + A1 + 2)u = 0. (73)

Since the equation x4 − x3 − 3x2 + x + 2 = 0 has roots 2, 1, −1, −1, we employ the ansatz

N(tm) = a2m + b + (−1)m(c + dm), (74)

and computed values for m = 0, 1, 2, 3 to obtain a = 4
3 , b = 0, c = 1

3 , d = 0. This allows us
to identify the N(tm) with the numbers χm given by (A.2) in the appendix.
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More can definitely be done often along suggestive lines. In the absence of a systematic
general approach, however, we confine ourselves to one further example, the evaluation of
N(t) for t = tB = 1m0n. Consider first the case m = 1. Setting w = A1u, we find, cf (73),

(A0
4 − A0

3 − 3A0
2 + A0 + 2)w = 0. (75)

We therefore employ the ansatz (74), and computed values for n = 0, 1, 2, 3, to get the
formula

N(t = 10n) = 4
9 2n + 2 + 1

9 (−1)n(5 + 3n). (76)

It can be checked for various n � 4 that (76) does yield a (correct) integer value.
In fact (76) is a special case of a more general result, one whose proof depends on the fact

that (75) holds also for w = A1
m for all positive integers m. This result can be cast eventually

into the form

N(t = 1m0n) = cTA0
nA1

mu = φm(φn + (−1)n) + φm+1, (77)

where, for n = 0, 1, 2 . . ., the φn belong to the sequence

0, 1, 2, 3, 8, 13, 30, 55, 116 . . . . (78)

A large number of spot checks against a large amount of computer output have been performed.
It is seen by inspection of these numbers that the φn are related to the χn by means of
χn = φn + φn+1. This enables a systematic discussion of them, given in the appendix.

We note also that (77) reduces to (76) for m = 1, using (A.10) from the appendix, and to
(72) for n = 0 using (A.8) there.

6. Additional remarks

In section 5, we have shown that the r-block methods introduced in [20, 21], for linear first-
order cellular automata with cell variables taking values in Z2, can be extended to first-order
matrix cellular automata whose cell variables take values in M2,2(Z2). And of course these were
introduced to allow treatment of reversible second-order linear cellular automata whose cell
variables take values in Z2. We have explicitly used only two-blocks, but there is no obstacle
in principle in going to higher r. This will be essential when algebraic work on evolution of
RCA1–3 from states more complicated than single seed initial states is undertaken.

The cellular automata RCA1–3 are specially simple examples, based on the updating rules
(1–3). There is, beyond these, see chapter 9 of [9] for an extensive discussion, a wide diversity
of interesting reversible cellular automata.

Further, if one wishes to consider reversible cellular automata for which cell variables
take values in, say, Z3, it should be clear enough that methods like those described here can
be applied. Transition matrices Ar for the transitions from time t to times (3t + r), r = 0, 1, 2,
arise; their sum A = ∑3

i=1 Ai can be applied to finding results for

W(M) =
3M−1∑
t=0

M(t),

analogous to those found for V(M) above.
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Appendix. The quantities χn and φn

The set of quantities χn appear first in section 2.2. They acquire significance here simply
because it turns out that many useful formulas for the N(t) of various cellular automata involve
them. See e.g. (12) for Rule 150, (57) and (58) for RCA2, and (72) for RCA3. A related set
of quantities φn likewise draw themselves to our attention because results for RCA3, see (77),
appear to be most naturally presented in terms of them.

The χn are defined [1], initially for n = 0, 1, . . ., by the relations

χn+1 = 2χn + (−1)n, χ0 = 1, (A.1)

so that easily

χn = 1
3 (2n+2 + (−1)n+1), n = 0, 1, 2, . . . . (A.2)

The formula (A.2) can also be derived by solving the difference equation

χn+1 = χn + 2χn−1, χ0 = 1, χ1 = 3, (A.3)

which can also be seen to be implied by (A.1). We have also these results

χn+1 + χn = 2n+2, χn+2 = 4χn + (−1)n. (A.4)

In section 4, various consistency checks require further identities, all easily proved. Examples
include

χnχm + 2χn−1χm−1 = χn+m+1, (A.5)

χn−1χm+1 − χnχm = (−1)mχn−1 + (−1)nχm, (A.6)

and the m = n case of (A.6) gives χn
2 − χn+1χn−1 = (−2)n+1.

One can also use the data in (A.3) to obtain the generating function

F(y) =
∞∑

n=0

χny
n = 2y + 1

(1 − 2y)(y + 1)
, (A.7)

from which the solution (A.2) follows easily. Also, (A.5) can be established by means of the
identity

F(y)2 + 2(yF(y) + 1)2 = F ′(y),

itself easily verified by use of (A.7).
We note here also, since the need arises later, that (A.3) can be used to assign values to χn

for negative integral values of n. Some values are shown in table A.1, together with those of
the sequence φn, to which we turn next.

The values of φn for positive n shown in table A.1 emerged, see (78), from computer data
for RCA3. By inspection it was seen that they are related to the χn by means of

φn + φn+1 = χn. (A.8)

As a consequence, they obey the difference equation

φn+3 = 3φn+1 + 2φn. (A.9)
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Table A.1. Values of χn and φn for −5 � n � 8.

n −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

χn
3
8 − 1

4
1
2 0 1 1 3 5 11 21 43 85 171 341

φn
17
8 − 7

4
3
2 −1 1 0 1 2 3 8 13 30 55 116

Since x3 − 3x − 2 = (x + 1)2(x − 2), we use the ansatz

φn = a2n + (−1)n(b + cn),

to solve (A.9). Using the values for φn for n = 0, 1, 2 from table A.1 as initial conditions, we
find

φn = 1
9 [2n+2 + (−1)n(3n − 4)]. (A.10)

Equation (A.10) affords the quickest way of building up the sequence φn via its consequence

φn = 2φn−1 + (−1)n(n − 2). (A.11)

We can also evaluate the generating function G(y) of the φn:

G(y) =
∞∑

n=0

φny
n = y(2y + 1)

(y + 1)2(1 − 2y)
,

and, by use of partial fractions, etc, check that one recovers from it the solution (A.10). One
can also check that substitution of (A.10) into (A.8) reproduces the result (A.2) for χn.
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